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w Assuming the plasma to be thermal and neglecting radiation and change of density 
due to electromagnetic forces, we write the equations for a steady electric arc burning in a 
cylindrical channel without a gas flow in dimensionless form as follows (see, for example, 
[l]): 

(l /r)  [ r t (T)  T '  l '  + E"o(T)  = 0, 

(tlr)(rH)' = ~(T), pT  = t ,  ( 1 . 1 )  

Cp = %(T), Y = Ecr(T), He = EH. 

As the boundary conditions we can choose 

rlr=_o = t ,  ri'~_o = H l ~ o  = 0 ( 1 . 2 )  

for a given value of E = const. 

The scales of temperature T, density p, thermal conductivity A, electrical conductivity 
o, and specific heat at constant pressure c_ are the values of the corresponding parameters 
on the axis of the channel Tm, Pm, Am, am, Pand Cpm. 

The radius of the channel is chosen as the scale of length, and as the scales of elec- 
tric field strength E, inherent magnetic field[ strength Hr and current density J, we choose, 
respectively, 

E m =  (tlR.,)V'~..,T.,/(rm, Hm = Em~mRm, "fro = Em~m" 

It should be noted that, in addition to Eqs. (1.2), T[r=, = TR, where T R is the dimen- 

sionless temperature of the wall, can also be chosen as a boundary condition; T R can be de- 
termined from the three boundary conditions for an equation of second order [the first equa- 
tion of system (i.i)] with unknown constant E. 

We write the linearized dimensionless equations for perturbations in the form 

d iv  (~V 0 q- (d~/dT)OvT) = p%(OO/Ot + v . v T  ) -- E . j  -- e .$ ,  

pOv/Ot = --VP q- S(J • h q- j • H) q- (I/P) Div ~, (i. 3) 

o~at + div  (pv) = 0, gT + Op = 0, 

j = ~e + E(d~/dT)O + R I o T  • H, 

rot  h = j - -  R2Oe/at, rot  e = --R~Oh/Ot, div  h = 0, 

where v, p, 0, h, e, j and g are the perturbations of the velocity vector, pressure, tempera- 
ture, magnetic field strength vector, electric field strength vector, current density vector, 
and plasma density, respectively, T is the tensor of the viscous stresses; S = BeJmHmt~/PmRm = 
be x ~mTmC~m~/Am is the Stewart number: Be = 4~-i0 -7 kg-m/C 2 is the magnetic permeability; 

t m = PmCpmR~/Am is the characteristic time; P = pm~/Bmtm = AmCpmBm is the viscosity parame- 

ter; ~m is the dynamic viscosity on the axis of the channel; and R~ and Ra are dimensionless 
parameters determined by the formulas 

R1 = ~e~m~m/pmCpm, Rz = ee~m/~mPmCpmR ~ 

(s e is the dielectric permittlvlty). 
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We shall estimate the orders of magnitude of the dimensionless parameters occurring in 
the system of equations (1.3). Assuming that ~e ~ I0-6, Om ~ 10s, T m ~ i0~, Pm ~ i0-2, Xm " 

i, Cpm - 10 s, R m ~ i0 -~, ~m ~ 10-6, and Ee ~ 10-~2 (values of the sealed quantities are given 

in Sl units), we obtain S ~ l03, P ~ I0, RI ~ i0 -5, and R2 ~ 10-x3. In the future, we shall 
neglect terms in the System of equations (1.3) containing the parameters R~ and R2. 

Describing the system of equations (1.3) in projections, we shall find the solutions for 
the unknown functions in the following form: 

o(t, r ,  ~, z) -+ (o(o/~a,  
v~(t, r, r  z ) - -~ v(~G, hr r, r z ) - +  Eh(OG, 

el(t, r, ~, z) -+ Ee(,$G, p( t ,  r, ~, z) -+ Sp(r)G, (1 .4 )  

~ ( t ,  r, r  z) -+  (w(O/~k)G, hi( t ,  r, r z) -+ hr(OG , 

hz(t  , r, r  z) -+ hz(Oa,  %(t ,  r, r  z) - +  %(0G, 
%(t,  r, r  z) --~ v,(r)G, 

where  G = exp(mt  + i k z ) ,  m i s  the  complex f r e q u e n c y  (unknown e i g e n v a l u e ) ,  and k i s  the  wave 
number, i.e., the problem concerning the stability of the electric arc relative to symmetri- 
cal perturbations is being studied. In formulas (1.4), the subscripts r, ~, and z denote 
the projections of vectors on the corresponding coordinate axes. Substituting expressions 
(1.4) into Eqs. (1.3), we obtain two independent systems of equations, 

iker = O, --7t (rhr) '  = - -  iM~ z, h; - -  ikh  r + ae~ = 0; 

I da 

-~ --fi- ~--y- t rpv  ) - -  ~t -~- + k ~ v + ~tw' --g- ~t (rv)" H- w , 

+ ( r .w ' ) '  - - Pk v --'SE k Hh + ( r . v ) '  + 

4 k~lx w _ 2 .~ t . . . . .  + T ~  ~t--f-try) , 

+ (rpl,), = (o9 - -  pro, 

1 do,fl~ + ( r O ' ) '  = ( ~  -4-k')O + % p T ' v - -  E ' ( 2c l e  + T ' ~ ' - / '  

1 d ~ g  #~__ k ~ t---(rh)' - -  o e - " " - ~ ~  ~ h l  

(z.5) 

( l .6)  

here and in the future, the primes denote the derivative with respect to r. 

For the last three equations of system (1.5), if we assume the boundedness of the func- 
tions at zero and at infinity, then generally only a trivial solution exists. It can also 
be verified that m < 0 for the first equation of system (1.5), i.e., the electric arc is sta- 
ble relative to those perturbations related to the system of equations (1.5). Therefore, 
in the future we shall be concerned with the study of the system of equations (1.6). 

Assuming the boundedness of the functions at zero, and also that the boundary of the 
channel is an impermeable, non-current-conducting surface with a constant temperature, we 
write the boundary conditions for the system of equations (1.6) in the form 

v - -  w' ~ O' = h  = 0  ~r r = O, 
v-- w--0 =h =0 ~r r =l. (1.7) 

Thus, a boundary-value problem in eigenvalues has originated, i.e., a value of should be 
found for which there is a nontrivial solutiDn of ~he problem (1.6), (i.7). Having deter- 
mined m, the stability can be judged from the real part: For m r = Re(m) > 0, theperturbations 
increase with time, while for m r < 0 they attenuate. We note that, in the first place, the 
system of equations (1.6) allows a reduction of order [for example, v' canbe determined from 
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the third equation of system (1.6) and can be substituted into the first equation] and, sec- 
ondly, the problem (i.i), (1.2), (1.6), (1.7) is symmetrical rela_tive to E and k; also, if 

= m r + im i is an eigenvalue of the problem (1.6), (1.7), then m = m r -- im i also is an ei- 
genvalue. 

It will be advantageous to construct the spectrum of the eigenvalues of the problem 
(i.i), (1.2), (1.6), (1.7) in the range of measurement of the parameters E, k, S, and P where 
this spectrum can be determined. Obviously, the most successful region for constructing the 
spectrum of the eigenvalues is the region where E a << i and k 2 << I. 

w We shall undertake the investigation of the stability of the electric arc for k 2 << 
I. We shall find the solutions for the eigenfunctions and eigenvalues of the problem (1.6), 
(i. 7) in the region of k a << 1 in the form of power series with respect to the small parame- 
ter k2: 

p = ( t /P~)(po -5 k~p~ + k ~ 2  + �9 .), 

v = ( t / p ) ( v  o + Lay, + . . .), w = tv o + k2wl  + . . . .  ( 2 . 1 )  

0 = 0 o + k ' O ,  %- . . . .  e =  e o + k ~ e 1 +  . . . .  

h = h o -+- k2h l  + . . . .  to = to o + k2tol  + . . . 

Substituting expansions (2.1) into problem (1.6), (1.7), after simple transformations 
in the zero approximation with respect to k 2, we obtain the following system of equations 
(the subscript zero is omitted): 

p" = 0, ( t /r)  (rv.u,'); = p + P t o p w ,  

t o~ 
7 (rv)" = ~ - ~  0 - -  p w ,  

t r a ' V  CppO) ( r ' " !  - - - - - - - - ~ 0  - [ - c p T ' v - - E  ~ \ 2 o e ~ - t - - - d ~ O ]  
~, d T  : ] '  

__~.( i d,~o, e' = 0 rh)"  = oe  + - -~  d"-@ 

(2.2) 

with boundary conditions (1.7). 

In the region of E ~ << i, there are two versions of the construction of the expansion 
of the eigenfunctions and eigenvalues of problem (2.2), (1.7) with respect to the small pa- 
rameter E2: 

version i, 
P = Po -]- E2P l  + E4P.2 + . . . .  v - :  vo + E2v l  ~-  . . . .  

w = w o + E~wl + . . . .  0 = 0o + E201 + . . . .  (2.3) 
h =h o + E 2 t h - 4 -  . . . .  e = e  o + E 2 e x +  . . . .  

co = too + E2to l  + �9 �9 .: 

version 2, 
P = Po + E~Px + E*p.~ + . � 9  v = v o + EZUl -{- . . . .  

w = w o + E2tvl  + . . . .  0 = E2(0o + E~31 + . . .), ( 2 . 4 )  

h = E~(ho + E 2 t h  + . . . ) ,  e = EZ(e o -4- E~ex + . . . ) ,  

to = (l/P)(to0 + E%1 + . . . ) .  

S u b s t i t u t i n g  e x p a n s i o n s  ( 2 . 3 )  and  ( 2 . 4 )  i n t o  p r o b l e m  ( 2 . 2 ) , ( 1 . 7 ) ,  we o b t a i n  i n  t h e  z e r o  
approximation with respect to E 2 (taking into account the expansion of the unperturbed solu- 
tion with respect to the parameter E 2) two boundary-value problems in eigenvalues, from which 
two eigenvalue spectra can be determined. The first spectrum, related to expansion (2.3), is 

2 
determined by the formula mo= --Yn' whlle the second spectrum, related to expansion (2.4), 
is determined by the formula mo= --A 2, where Yn and X n are the positive roots of the equa- N 
tions Jo(Yn ) = 0 and XnJo(An) -- 2Jz(Xn ) = 0 (Jo and J, are Bessel functions), numbered in 

ascending order. 

The eigenvalues of the problem (2.2), (1.7), determined for E 2 << 1 by the approximate 
formulas (2.3) and (2.4), were extended numerically from the region of small electric field 
strengths to the region of realistic strengths (i.e., those values of E for which the wall 
temperature is considerably less than the temperature on the axis) with simple dependences 
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of p, Cp, l, and a on the temperature, 

=r =~= t, a =  T, (2.5) 

and for different values of the viscosity parameter P. 

It was found that the real part of the eigenvalues is everywhere less than zero. Then, 
for a fixed value of E = 2.35 (which corresponds to a wall temperature of T R = 0.03), the 
eigenvalue spectrum was investigated when P was varied from 0 to ~. It was found also in 
this case that the real part of the eigenvalues is everywhere negative, i.e., the electric 
arc is stable relative to perturbations with an arbitrarily small wave number. At the same 
time, as follows from [2], in the case when there is no viscosity (ideal fluid), instability 
relative to long-wave perturbations originates if E > 2.15. 

w The eigenvalue spectrum of the problem (1.6), (1.7), taking account of Eqs. (2.5), 
(i.i), and (1.2), obtained in the region of k 2 << i, was extended into the region of large 
wave numbers for E = 2.35 and for different values of P and S. It was found that if the 
product PS > 4.2.103, then instability originates with an increase in wave number, but as 
k § ~, the instability disappears; i.e., the electric arc is stable relative to perturbations 
having both arbitrarily small and arbitrarily large wave numbers. Further, when considering 
the stability of the electric arc without taking account of viscosity, it was found under 
similar conditions that the arc is unstable over the whole range of wave numbers (see [3]). 

In Fig. la, the neutral curves (curves separating the stable regions from the unstable 

regions) of PeSe = PeSe(k) are drawn, while in Fig. ib the curves of mo = we(k) (the sub- 
script e denotes neutral parameters, i.e., parameters for which m = i~ i = im e) are drawn for 
different Stewart numbers (curves 1-3 are for S = i0 *, 2,6.104, and 10s). The complex PeSe 
is plotted along the ordinate axis, since in the case ,, = im i = i~ e = 0 the criterion of 
stability is the product PS. For a fixed Stewart number, the neutral curve can be determined 
in the following way. Moving along branch I in the direction shown by the arrow, transfer 
to branch II (branches I and II of the neutral curves are constructed for the case when w e = 
0, and, therefore, they occur for any Stewart number) and continue up to the intersection 
with the curve corresponding to the required Stewart number; then a turn to the right is made 
and movement is continued along this curve. With the movement given in this way, the region 
of instability is found on the left-hand side of the neutral curve. 

The neutral curves in the limiting cases of very small and very large Stewart numbers 
were calculated. For S << i, the asymptotic expansion with respect to the small parameter S 
can be constructed: 

p = S(po + S l h  + S:p,. -k  �9 �9 .), V = VO + So l  + . . . .  

w = u' o + Sw, + . . . .  0 = Oo + $9~ + . . . .  

h , = h o + S h l - } - . . . ,  e = e o + . S e l  ~ - . . . ,  

~e= S(t~ ~ S(~ -,4- . . .), P e  = (t/S)(Peo + S P ~ l  + �9 �9 .). 

(3.1) 

Substituting expansion (3~i) in the problem (1.6), (1.7), we obtain the following system 
of equations in the zero approximation for the neutral ̀ oscillations: 

p'  = --ip(,~t, -- .  E ~ [ H ( o  e'-i- -X" ~ t  d~ O) + 6hi + 

t r2 

+ (ruw' ) '  = ipo~ePeW - -  k2Pep - -  E * P e k ~ H h  -4- kO.t__ + 
r ' 

, 43 k ~ } z w - - T ~ t - 7  - 2  ,z I (rv)', (3,2) 

(roY)' = -- pw, 

( ) _ _  t da 
t (tO')'  = c v p T ' v ,  k~O - -  E* 2oe -4- --f- ~-f 0 , 
r 

_ _  l da e" -~ kz" h i (rh) '  = ae -t- -~" ~-~ O, 
r 

(the subscript zero is omitted) with the boundary conditions (1.7). The neutral curves for 
the problem (3.2), (i. 7), calculated over a wide range of variation of the wave number, are 
shown in Fig. la, b by curve 0. 

448 



"~: flU H#/-1 
,.,o,41 it ////I 

i I  ,o,41 ,iitf: 1 

L---J I 
Fig. 1 

/ 
1-/- ---~ 

It2 
I ! 

4 6 k 

In the region of S >> I, 
lem (1.6), (1.7) with respect to the small parameter I/S can also be constructed. 
tral oscillations, these expansions appear as follows: 

p = S Po + "Tg- Pi q- "gi P~ -i- . . -  , v = vo + -g- vl q- . . . ,  

We 

the expansion of the eigenfunctions and eigenvalues of the prob- 
For neu- 

! 
0 = 0 o + W-01  + . . . ,  

t 
e = eo § --~ el -[- . . . .  

1 (  p ~ ~  ) 
Pe = -g- ~ - P e t  q- . . . .  

1 
w = Wo +--g-w~ + . . . ,  

t 
h ---- h o + - g - h i  ~- . . . ,  

t 
= r + --g~ + - . . ,  

(3.3) 

where T 

Then substituting expression (3.3) into the problem (1.6), (1.7), we obtain in zero approx- 
imation with respect to I/S (omitting the subscript zero) the system of equations 

I 2 

' , '  /1'! - ~ ( ~  § kG ~ + ~ , - - r t , , t - ; - o . v > , ,  +w ,JJ, 

( ~ , w ' ) '  = - k W e p  - -  e W ~ k V I h  - -  k~ % ( r ~ O '  + 

4 _ 2 I _~_ ._g_ k~tw _.g. k~t  _.f. (rv), ' ( 3 . 4 )  

-7-t (roy)' = - pw + X - ~  0 ' i %  -7-~ (rOT = + k~ 0 + eppr 'v  

[ E 2 t 2~ jr  ~ a t e / '  

t d_2aO, e' k---'h t__.r (rh)' = oe + --f- dT = a 

w i t h  t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 7 ) .  Fo r  t h e  p r o b l e m  ( 3 . 4 ) ,  ( 1 . 7 ) ,  t h e  n e u t r a l  p a r a m e t e r s  Pe  
and w e have been constructed as a function of the wave number. The results of the calcula- 
tions are depicted in Fig. in, b (curve 4). 

We shall call the values of the parameters PeSe and k satisfying the condition 

PcSc ---- min [PeSe(k)] 

the critical values and we shall denote them by the subscript c. The critical parameters 
PcSc and k c have been constructed as a function of the radius of the arc r o for a fixed wall 
temperature. In this case, %, p, and cv, as before, were assumed to be equal to unity~ and 
o was assumed to be a piecewise-linear ~unction of temperature: 

~t : ~ : c p :  1, 

f T ~  T~ for r > r , ( r < r o ) ,  

z'=/t 0 T" for T<T.(r>ra),  
is the temperature below which the electrical conductivity is equal to zero. 
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Figure 2a shows the value of the critical complex as a function of the radius of the 
arc re, and Fig. 2b shows the corresponding critical wave number k c (the wall temperature in 
this case is equal to 0.03). As r e § 0, the value of the complex PcSc increases unrestrlct- 
edly, obviously, according to the law 

P=S c = const/r2o (i --  To) s. 

The critical curves for T R = 0.015 and 0.06 were also constructed, but they differed from the 
curves shown in Fig. 2a, b by not more than 8%. 

For the numerical calculation, the range of integration was divided into two regions: 
an electrically conducting region (0 ~ r ~ re)and a nonelectrically conducting region (r_ 
r ~ i); the solutions constructed in these two regions were joined when r = r . The methods 
described in [4] were used in the calculations, e 

In conclusion, we note the following: 

i) The viscosity proves to be a stabilizing influence (especially in the region of very 
small and very large wave numbers); 

2) the criterion of stability is the product PS, the critical wave number varies only 
slightly (from 2.6 to 4.1) with a decrease in the radius of the arc from i to 0.01, and for 
this the phase velocity is equal to zero; 

3) the model of an ideal liquid when investigating the problem of stability of an elec- 
tric arc is applicable almost always, with the exception of a region of very small and very 
large wave numbers. 

i. 

2. 

. 

4. 
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